

Virtual reality exposure therapy and non-invasive brain stimulation for fear of heights

Barbara Bohmeier¹, Lisa M. Cybinski¹, Dominik Gall³, Daniel Gromer³, Stefan Unterecker¹, Angelika Erhardt-Lehmann^{1,4}, Lorenz Deserno², Jürgen Deckert¹, Thomas Polak¹, Paul Pauli³, Martin J. Herrmann¹

¹ Center of Mental Health, Dept. of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Germany, ² Center of Mental Health, Dept. of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Germany, ³ Center of Mental Health, Dept. of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy), University of Wuerzburg, Germany, ⁴ Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany

INTRODUCTION

- Recent studies have demonstrated that transcranial magnetic stimulation (TMS) combined with behavioral treatments augments therapy effects in anxiety disorders and post-traumatic stress disorders (Lantrip et al. 2022), however, the optimal stimulation localization for TMS is still unknown.
- **Objective:** transfer of the positive effects of intermittent theta-burst stimulation (iTBS) of the left dorsolateral prefrontal cortex (dIPFC) on the retention of fear extinction (Deng et al. 2021) to a therapeutic setting

METHODS

- Sample: n = 45 participants with a DSM-V diagnosed fear of heights (double blind randomized in n = 22 Verum and n = 23 Placebo)
- rTMS: 50 Hz iTBS (80% active motor threshold) was applied to the dIPFC (according to Deng et al. 2021). The stimulation target was determined by the F3 electrode location from the 10-20 EEG system using the BeamF3 method (Beam et al. 2009).

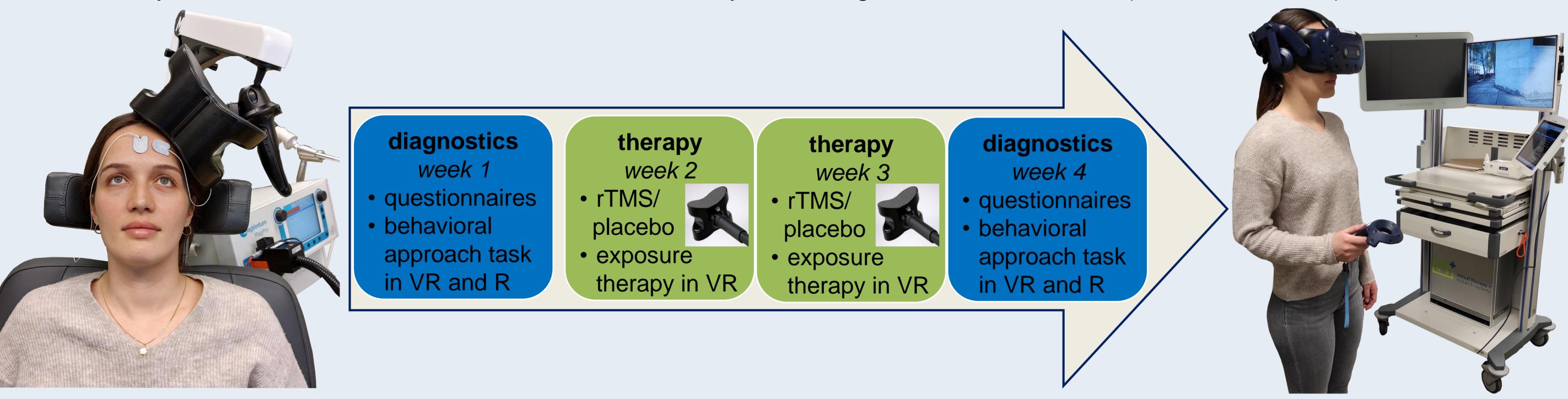


Figure 1: rTMS and blinding electrodes

Figure 2: study process

Figure 3: behavioral approach task in VR

- Primary outcome: Acrophobia Questionnaire (AQ) with the subscales anxiety (ACRO) and avoidance (AVOI) (Cohen 1977)
- Secondary outcome: final approach to the height situations (VR-elevator range: 0-50, staircase range: 0-17) and max. anxiety (Subjective Units of Discomfort, range: 0-100)
- Data analysis: mixed ANOVAs and t-tests in SPSS

RESULTS

• Virtual Reality Exposure Therapy (VRET): Ø duration: 27.10 min (range: 16-45), Ø sense of presence 72.39% (range: 38.75-100); significant difference regarding presence ($t_{42} = 2.25$, p = .030), experimental group reports higher presence (78.16% vs. 66.63%); no differences regarding other process variables

Table 1: results of the mixed ANOVAs:	measures	statistics (F)		
there is a significant		group	time	interaction
main effect of time, but no main effect of	ACRO	0.08	42.75***	0.37
group and no	AVOI	0.64	63.70***	0.37
group*time interaction.	final approach (VR)	0.55	39.73***	0.42
*** p < .001,	max. anxiety (VR)	0.15	10.70**	0.14
** p < .01;	final approach (R)	3.21	37.32***	1.88
VR = virtual reality, R = reality.	max. anxiety (R)	0.12	25.76***	1.23

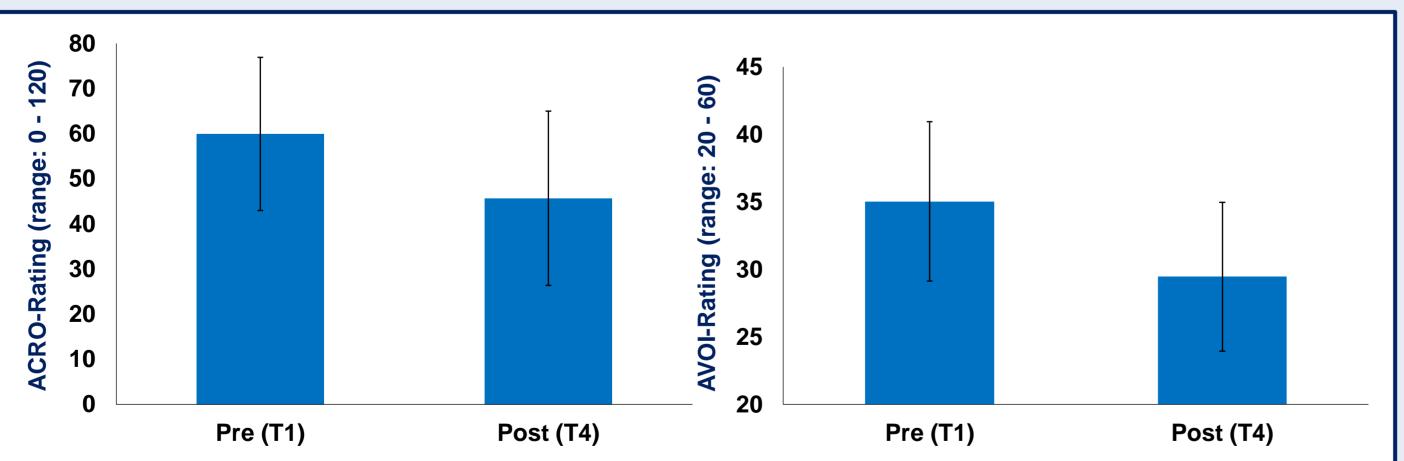


Figure 4: change in AQ (ACRO and AVOI) caused by the therapy for both groups (pre/post)

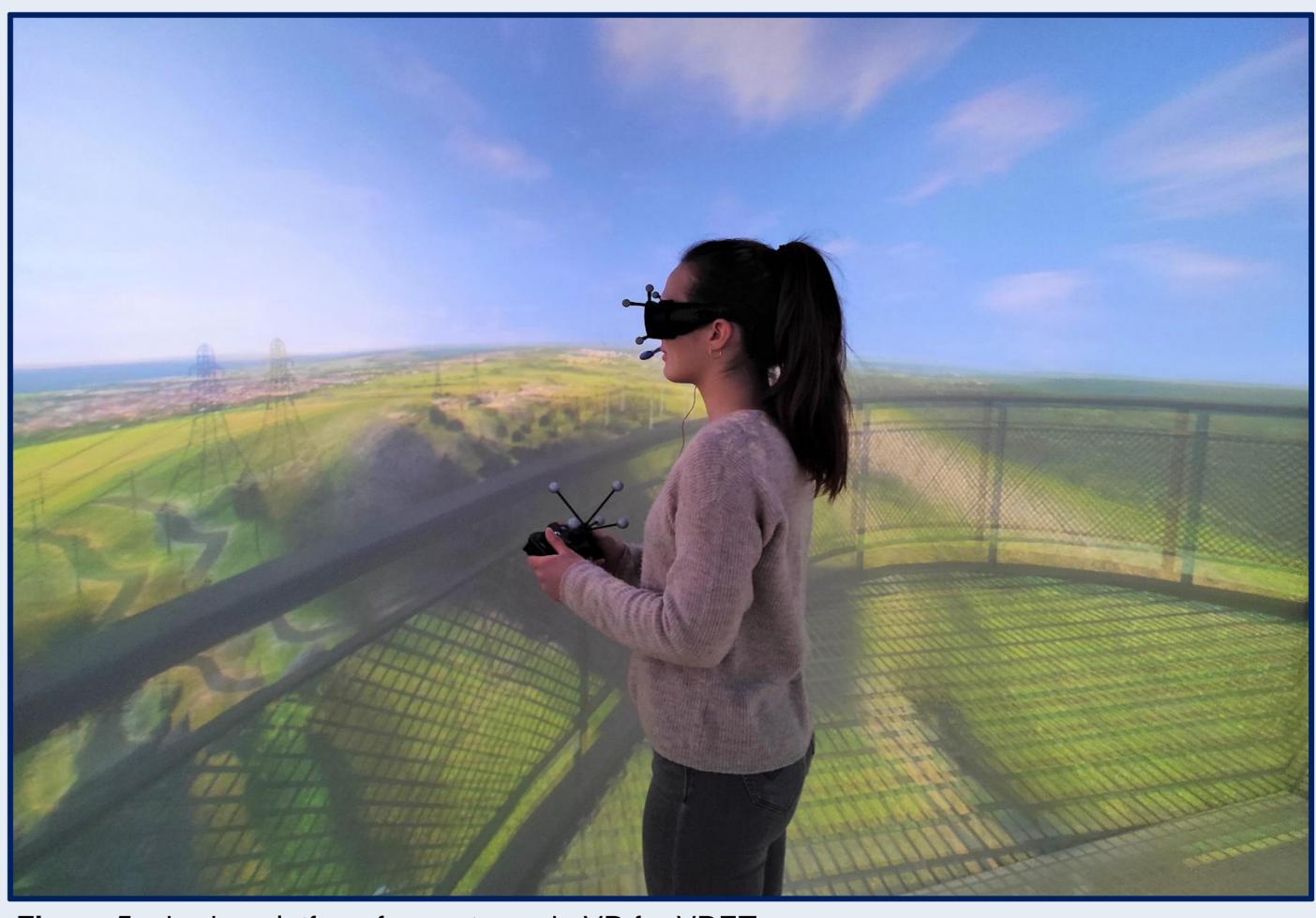


Figure 5: viewing platform from a tower in VR for VRET

DISCUSSION

- This study provides evidence that a combination of rTMS of the dIPFC and VRET is feasible in a therapeutic setting.
- Here, rTMS of the dIPFC reveals no additional effect to VRET on symptom reduction in subjects with fear of heights.
- As shown in previous studies, VRET is effective.
- Further research is required to determine the correct parameters for successful rTMS.

LITERATURE

- Beam, W., Borckardt J. J., Reeves, S. T., George, M. S. (2009). An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul. 2(1), 50–54. doi: 10.1016/j.brs.2008.09.006.
- Cohen, D. C. (1977). Comparison of self-report and overt-behavioral procedures for assessing acrophobia. Behav. Ther. 8, 17–23. doi: 10.1016/s0005-7894(77)80116-0.
- Deng, J., Fang, W., Gong, Y, Bao, Y, Li, H., Su, S., Sun, J., Shi, J., Lu, L., Shi, L., Sun, H. (2021). Augmentation of fear extinction by theta-burst transcranial magnetic stimulation of the prefrontal cortex in humans. J Psychiatry Neurosci. 46(2), 292–302. doi: 10.1503/jpn.200053.
- Lantrip, C., Szabo, Y. Z., Kozel, F. A., Holtzheimer, P. (2022). Neuromodulation as an Augmenting Strategy for Behavioral Therapies for Anxiety and PTSD: a Narrative Review. Curr Treat Options Psychiatry 9, 406–418. PMID: 36714210.